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Broad-Band Analysis of a Coaxial
Discontinuity Used for Dielectric

Measurements

NOUR-EDDINE BELHADJ-TAHAR AND ARLETTE FOURRIER-LAMER

,4bsowci —A coaxial line terminated by a gap is considered, the gap

being filled with mr unknown material. This cell enables measurements of

complex permittivity of dielectric materials to be made. The relationship

linking the measured admittance to the dielectric properties is obtained

from a theoretical analysis of the electromagnetic field in the tine. The

equivalent-circuit parameters of a coaxial line terminated by a gap are

obtained all higher order waves excited at the discontinuity are taken into

account. The measurements show good agreement between measured and

calculated data from dc to 12.4 GHz.

I. INTRODUCTION

T HE GEOMETRY OF this problem, composed of a

junction of a coaxial guide and a short circular guide,

is shown in Fig. 1.

N. Marcuvitz [1] found an approximate solution by

using the small-aperture method treating all higher modes

by plane parallel approximations. The proposed equivalent

circuit is an approximation valid for d/( a – b)l and

2~d/A <<1. The discontinuity admittance appearing at

the plane of discontinuity is capacitive and is valid at least

so long as frequency is below the value for which the

spacing between conductors of the coaxial line is a half

wavelength. H. E. Green [2] and L. Young [3] have treated

numerically this problem for very low frequencies. A least-

squares boundary residual method has been used by R.

Jansen [4] for the numerical solution of the discontinuity

admittance.

This paper presents a general formulation. The problem

is treated by the mode-matching method in which the fields

on each side of discontinuity are expanded in an infinite

series of modes matched across the boundary to preserve

continuity. This was the approach used by Whinnery and

his coworkers [5] in the analysis of a sudden change in

diameter of the inner conductor of coaxial lines.

The solution of the field equation yields the equivalent

admittance without any restrictions.

II. FORMULATION OF THE GAP PROBLEM

To illustrate the formulation of the gap problem, let us

consider the geometry shown in Fig. 1. The structure

consists of an interruption of the inner conductor of the
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coaxial line. The A region is filled by air, while the B
region is filled by an isotropic and nonmagnetic material

with complex permittivity ~~C*. The conductors of the line

are assumed perfect for present purposes.

A study of the discontinuity shows then that field com-

ponents E,, E,, and H+ are required. Thus, in addition to

the principal wave in the A region (TEM field), higher

order waves of the transverse magnetic type (E waves) are

excited at the plane of discontinuity (z = O).

In the A region, the modal expansions for the transverse

components of the electric and magnetic fields are

E,.= +~o[f=pjkoz-trexp– jkoz]

+ D.l-zl(~Antr)exp–Ym.z
?>1

1
Ho. =; Y~OAo[expjkoz – rexp– jkoZ]

+ ~Am. YAmZ1(kAMr) exp– y,~.z (1)
nl

where r = Ah/A o is the reflection coefficient at z = O, and

Al and A. are the amplitudes of the reflected and incident

TEM waves, respectively

YAO= – c juo~YA=—
Po m Y.,

y~=~.n,/l-(h/k.ti,)2and b=LJG. (2)

In the above, ZP denotes the linear combination of pth

order Bessel functions of the first and second kinds

Zp(k~n,. r) =Jp(k~nl. r)+ G~m.Np(k~m. r). (3)

The required boundary condition on the electric field at the

short circuit z = – d gives the solutions for the B region

Er, =~B~~l(k~n. r)sAyn(z+d)

n
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Fig. 1. Geometry of the gap.

The boundary conditions at the conductors of the line

require that E= is zero for each E wave at r = a and r = b
in the A region, and r = a at the B region. Then

ZO(k~mwz) =Zo(k~m. b) =0 (5)

.lo(k~n. a)=O (6)

and from the definition of (3) and (5) requires

Jo(k~m. a) Jo(k~m. b)
G.m= –

No(k~m. a) = – lvo(k~m.b)
(7)

Jo(k~m. a). No(k~m. b)– Jo(k~m, b). No(k~m. a) =0. (8)

The required matching conditions at the reference plane

z= Oare

ErB=D?nJ@Bn-r)
n

b<r<a (lo)

= ~Y~OAO(l– I’)+ ~AmY~mZ1(k.m.r),
m

b<r<a (11)
where Bn = B#hynd and

. .

coth[kBH/1-(ko@/k,n)2d].(12)

The coefficients in (10) and (11) are determined by using

the orthogonality properties of Bessel functions. The first

step is to perform the following integral:

fi-Jl(kBq-r)Er~dr- (13)

Applying the Lommel integrals with (9), (10, (5), and (6),

one may write

Bn 2&(kBn.b)

kII,flO(l+r) = [kBn. aJ1(kBn. a)]2 “

Now Hqfl is integrated over the range b < r <a. Recalling

(11), (5), (6), and the property of Bessel functions

plo++=- ;Zo(fw
one obtains

BnYB
Y~OAo(l– 17)lnf = ~ ~. Jo(kB,,. b).

~ kBn
(15)

The last step is to integrate the quantity rZ1(k~p. r)H4B
over the range b < r < a. Then

+{[az,(k.,a)]’-[~z,(k.,-b)]z)

“x
BnYBnk~n.bJo(kBn. b) Z1(ktip. b)

k; _k’ (16)
n ?! AD

The normalized admittance Yd/ Y. may be written in the

following form: Yd/Yo = (1 – r)/(l + II). Incorporating

(14) into (15) allows us to derive the following solution:

Yd kocy

~=J~
b

[ ~d]2J:(kBn. b)coth kBn
.Y

; kBm/l - (ko@/k~n)2 . [k~fl. aJ1(k~n. a)]2

Am Z1(k~m. b)
l–b~ 1 (17)

m ‘0(1+ ‘) “ (kAm/kBn)2–l “

III. NUMERICAL COMPUTATION

The computation of (17) starts with the evaluation of

quantities derived from Bessel functions. A Bessel sub-

routine calculates the zero and first-order Bessel functions

of the first and second kinds (Jo, Jl, No, Nl). For these

orders, the routine is accurate down to the smallest practi-

cal arguments. The accuracy is generally to five decimal

places. If large arguments are required, the standard trigo-

nometric approximations are applicable. The roots of the

transcendental equations (6) and (8) are found by iteration.

It can be shown that all these roots (k~m, k~n) are real

even in the lossy case (lossy materials in the B region) and

so, the arguments of the calculated Bessel functions are

real. From the desired number of roots, the quantities k~ ~,
k ~n, and finally the values of Z, are obtained.

For dielectric materials of known properties, the first

part of the summation in (17) may be calculated at once.

AM Z1(k~m. b)
l–b,~

m 1‘0(1+ ‘) “ (k~m/kBn)2–i “
(14)
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Fig. 2. Admittance of the General Radio cell fdled by air; d = 2 mm.
(.): Experimental data. —: This theory. ----: Marcuvitz formula.

Fig. 3. Admittance of the General Radio cell filled with alumina.
—: Theoretical (d= 20.45 mm; d = 9.6). (.): Experimental data.
---- : Theoretical (d= 2 mm: d = 9.6). (O): Experimental data.

The coefficients A~/[AO(l + r)] are obtained by (16)

using (14), (12), and (2).

Ap
,([az~(k~,a)]’-[ bzl(k~pb)]z)

2k~p/’m

=–6*Ao(l+r)

2Y:(k~,,. b)k~,,. bZ1(k~p. b)coth[k~na.d]

“x
t? an[k~n. aJ1(k~,,. a)]2[kjH–kjp]

“[ Am zl(kAm. b)
l–b~

!

(18)
m AO(l+ r) “ (k~~/k~m)2–l

where a. = 1 – (kO@/k~n). One obtains

GIW
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Fig. 4 Variation of the real Dart of the cel~s admittance filled with
trichlorobenzene 1,2,4. C&l: General Radio; d = 20.45 mm.
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Fig, 5. Variation of the imagmary part of the cell’s admittance filled
with trichlorobenzene 1,2,4. Cell: General Radio; d = 20.45 mm.

The solutions of the above matrix equation are obtained by

retaining a finite number of higher order modes.

IV. NUMERICAL I&ULTS AND EXPERIMENTAL

VERIFICATIONS

The numerical results for the homogeneous case have

been checked against experiment by measuring the discon-

tinuity admittance versus frequency for the gap filled by

air. The measurements have been made by the microwave

automatic analyzer HP 841OB and are shown in Fig. 2. In

the same figure, comparison is made with the Marcuvitz

formula. Measurements have also been made for alumina

both with c1 = 20.45 mm and a?= 2 mm. Results and

comparison with theory are shown in Fig. 3. Figs. 4 and 5

represent measurements on trichlorobenzene 1,2,4. Tri-

chlorobenzene is assumed lossy with the following complex

permittivity (Debye relation) represented by the Argand

Ap [k~p. aZ1(k~p. a)]2- [k~p-bZ1(k~p-b)]2 E*Z k~n. b.l~(k~n.b)coth [k~fland]

Ao(l+r) “ 4k.p~-zl(k.,.b) = M CX.(1– kin/kj,)[kB,,o aJl(kBnoa)]2

Am Zl(ktim. b) (k~n.b)3.@(k~n. b)coth[k~nand]
–~*z ~ Ao(l+r) ~.k: b

“z (19)

II a~(l-ki,,/kjp)( l-kiti/kjm)[k~p”aJ1 (k~ma)]2-
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Fig. 6. Example of the accuracy of measurements.

diagram in the inset in Fig. 4:

E*= Em+(E~– em)/(l+jf\fo)

where c. = 4.02, cm = 2.58, and ~0 = 3.5 GHz. The accu-

racy of measurements depends on the measured values of

B/Y. and G/Yo. An example of the accuracy provided by

the automatic network analyzer is graphed in Fig. 6. It is

interesting to note that values of B/ YOor G/Y. less than

10-3 or more than 103 involve, generally, errors greater

than 100 percent in the corresponding values. This is the

case of dielectric samples with too small losses (the mea-

sured values of G/Y. are not available, viz, alumina) and

of values near the resonant frequency.

The first resonant frequency occurs when the fundamen-

tal TMOI mode is above its cutoff frequency. For the

lossless case, the value of this resonant frequency is ob-

tained by (19), setting r = – 1. It should be pointed out

that the first resonant frequency depends on a, b, c’, and d
and tends to the cutoff frequency of the TM 01 mode for

large values of d. Thus, to avoid prohibitive experimental

values, the radius of the outer conductor is reduced (Fig.

7): 50 Q – APC7-mm line (a= 3.5 mm) is used up to 18

GHz. The other resonant frequencies are given by

f=a$+-3’2‘=1723”””
The gap behaves then as a resonant cavity where the TMOI

is stationary.

V. THE INVERSE PROBLEM

To deduce the complex permittivity from the measure-

ments of the admittance Yd/ Y., an iterative method is

used. Broad-band dielectric investigations on several

materials have been made. Now, electroactive polymers are

150

d,lnm
Z,,l

e

10 100

RADIUS OF THE OUTER CONDUCTOR a (mm)

Fig. 7. Theoretical resonant frequency of the gap in a 50-Q line.

studied by this method. The results have shown that the

complex perrnittivity can be measured with an error of less

than 5 percent by proper choice of sample dimensions.

This work will be published in a future paper.

VI. CONCLUSIONS

An approach for computing the equivalent-circuit

parameters for the termination of a coaxial line by a gap

filled by lossy materials is described. The method is quite

general and the results show that the analysis is accurate

over a broad range of frequencies. This cell enables mea-

surements of the complex permittivity of dielectric materi-

als to be made.
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