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Broad-Band Analysis of a Coaxial
Discontinuity Used for Dielectric
Measurements

NOUR-EDDINE BELHADJ-TAHAR AnD ARLETTE FOURRIER-LAMER

Abstract —A coaxial line terminated by a gap is considered, the gap
being filled with an unknown material. This cell enables measurements of
complex permittivity of dielectric materials to be made. The relationship
linking the measured admittance to the dielectric properties is obtained
from a theoretical analysis of the electromagnetic field in the line. The
equivalent-circuit parameters of a coaxial line terminated by a gap are
obtained; all higher order waves excited at the discontinuity are taken into
account. The measurements show good agreement between measured and
calculated data from dc to 12.4 GHz.

I. INTRODUCTION

HE GEOMETRY OF this problem, composed of a
junction of a coaxial guide and a short circular guide,
is shown in Fig. 1.

N. Marcuvitz [1] found an approximate solution by
using the small-aperture method treating all higher modes
by plane parailel approximations. The proposed equivalent
circuit is an approximation valid for d/(a—b)! and
2@d /A < 1. The discontinuity admittance appearing at
the plane of discontinuity is capacitive and is valid at least
so long as frequency is below the value for which the
spacing between conductors of the coaxial line is a half
wavelength. H. E. Green [2] and L. Young [3] have treated
numerically this problem for very low frequencies. A least-
squares boundary residual method has been used by R
Jansen [4] for the numerical solution of the discontinuity
admittance.

This paper presents a general formulation. The problem
is treated by the mode-matching method in which the fields
on each side of discontinuity are expanded in an infinite
series of modes matched across the boundary to preserve
continuity. This was the approach used by Whinnery and
his coworkers [5] in the analysis of a sudden change in
diameter of the inner conductor of coaxial lines.

The solution of the field equation yields the equivalent
admittance without any restrictions.

II. FORMULATION OF THE GAP PROBLEM

To illustrate the formulation of the gap problem, let us
consider the geometry shown in Fig. 1. The structure
consists of an interruption of the inner conductor of the
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coaxial line. The A region is filled by air, while the B
region is filled by an isotropic and nonmagnetic material
with complex permittivity e *. The conductors of the line
are assumed perfect for present purposes.

A study of the discontinuity shows then that field com-
ponents E,, E,, and H, are required. Thus, in addition to
the principal wave in the A region (TEM field), higher
order waves of the transverse magnetic type (E waves) are
excited at the plane of discontinuity (z = 0).

In the 4 region, the modal expansions for the transverse
components of the electric and magnetic fields are
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where I' = A}, /A4, is the reflection coefficient at z = 0, and
Ay and A, are the amplitudes of the reflected and incident
TEM waves, respectively
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In the above, Z, denotes the linear combination of pth
order Bessel functions of the first and second kinds

Zp(kAm-r) = Jp(kAm-r)+GAm-Np(kAm~r). (3)

The required boundary condition on the electric field at the
short circuit z = — d gives the solutions for the B region
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Fig. 1. Geometry of the gap.

The boundary conditions at the conductors of the line
require that E, is zero for each E waveat r=gand r =5
in the A4 region, and r = a at the B region. Then

Zo(kA,,,'a)=Zo(kA,,,'b)=0 (5)
Jo(an‘a)=0 (6)

and from the definition of (3) and (5) requires
G, =— Jo(kAm‘a) _ Jo(kA,,,'b) (7)

" No(kA,,,'a) NO(kA,,,'b)

Jo(kA,,,'a) 'No(kA,,,'b)_ JO(kAm'b)'NO(kAm'a) =0. (8)

The required matching conditions at the reference plane
z=40 are

E =0 0<r<b

Er, = Zanl(kB,,'r)

)

1
= 7A0(1+ I)+34,2Z(k, 1),

(10)

b<r<a

H, = ZBnYB,,Jl(kB,,'r)

1
= YAOAO(l -T)+ ZAmYA,,,Zl(kA,,,'r)’

b<r<a (11)
where B, = B,shvy,d and

_ — Jwee*
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The coefficients in (10) and (11) are determined by using
the orthogonality properties of Bessel functions. The first
step is to perform the following integral:

/ar-Jl(kB -r)E,, dr. (13)
0 q

Applying the Lommel integrals with (9), (10, (5), and (6),
one may write
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Now H,_ is integrated over the range b <r < a. Recalling
D, (5) (6), and the property of Bessel functions

/Zl(k-r)dr=— %Zo(k-r)

one obtains

a B,Yp
Y Ao(1-T)in =¥

i -JO(an-b).

(15)

n n

The last step is to integrate the quantity rZ,(k 4, -r)H
over the range b <r <a. Then

YA,,T‘AP -{[a-Zl(kA,,'a)]z— [b-Zl(kA,,-b)]Z}
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n

The normalized admittance Y, /Y, may be written in the
following form: Y,/Y,=(1-TI)/(1+T). Incorporating
(14) into (15) allows us to derive the following solution:
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The computation of (17) starts with the evaluation of
quantities derived from Bessel functions. A Bessel sub-
routine calculates the zero and first-order Bessel functions
of the first and second kinds (J,, J;, Ny, N;). For these
orders, the routine is accurate down to the smallest practi-
cal arguments. The accuracy is generally to five decimal
places. If large arguments are required, the standard trigo-
nometric approximations are applicable. The roots of the
transcendental equations (6) and (8) are found by iteration.
It can be shown that all these roots (k,,, kp,) are real
even in the lossy case (lossy materials in the B region) and
so, the arguments of the calculated Bessel functions are
real. From the desired number of roots, the quantities k ,,,,,
k 5,, and finally the values of Z, are obtained.

For dielectric materials of known properties, the first
part of the summation in (17) may be calculated at once.

NUMERICAL COMPUTATION

4, Zl(kA,,,'b)

4,(1+T) (ka,/ks )1

(14)
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Fig. 2. Admittance of the General Radio cell filled by air; d =2 mm.
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Fig. 4 Variation of the real part of the cell’s admittance filled with

(®): Experimental data. : This theory. ----: Marcuvitz formula. trichlorobenzene 1,2,4. Cell: General Radio; d = 20.45 mm.
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Admittance of the General Radio cell filled with alumina.
: Theoretical (d =20.45 mm; ¢ =9.6). (®): Experimental data.
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Fig. 3.

The coefficients 4, /[A,(1+T')] are obtained by (16)
using (14), (12), and (2).

A

e etk e, )
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where a, =1—(ko/e* /kp ). One obtains

Fig. 5. Variation of the imagmary part of the cell’'s admittance filled
with trichlorobenzene 1,2,4. Cell: General Radio; d = 20.45 mm.

The solutions of the above matrix equation are obtained by
retaining a finite number of higher order modes.

IV. NUMERICAL RESULTS AND EXPERIMENTAL
VERIFICATIONS

The numerical results for the homogeneous case have
been checked against experiment by measuring the discon-
tinuity admittance versus frequency for the gap filled by
air. The measurements have been made by the microwave
automatic analyzer HP 8410B and are shown in Fig. 2. In
the same figure, comparison is made with the Marcuvitz
formula. Measurements have also been made for alumina
both with d =2045 mm and d=2 mm. Results and
comparison with theory are shown in Fig. 3. Figs. 4 and 5
represent measurements on trichlorobenzene 1,2,4. Tri-
chlorobenzene is assumed lossy with the following complex
permittivity (Debye relation) represented by the Argand

kg, bJ3(kp -b)coth[kya,d]

v o, (1= k3 /K3 YKy, ady(ky -a)]?
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Fig. 6. Exampie of the accuracy of measurements.

diagram in the inset in Fig. 4:
€= €% + (€S - €oo)/(]' + Jf/fo)

where €, =4.02, ¢ =258, and f,=3.5 GHz. The accu-
racy of measurements depends on the measured values of
B/Y, and G /Y. An example of the accuracy provided by
the automatic network analyzer is graphed in Fig. 6. It is
interesting to note that values of B/Y; or G/, less than
1073 or more than 10° involve, generally, errors greater
than 100 percent in the corresponding values. This is the
case of dielectric samples with too small losses (the mea-
sured values of G /Y, are not available, viz, alumina) and
of values near the resonant frequency.

The first resonant frequency occurs when the fundamen-
tal TM,; mode is above its cutoff frequency. For the
lossless case, the value of this resonant frequency is ob-
tained by (19), setting T"= —1. It should be pointed out
that the first resonant frequency depends on a, b, €/, and d
and tends to the cutoff frequency of the TM,; mode for
large values of d. Thus, to avoid prohibitive experimental
values, the radius of the outer conductor is reduced (Fig.
7): 50 @ — APC7-mm line (a = 3.5 mm) is used up to 18
GHz. The other resonant frequencies are given by

C; q2 k% 1/2
-+ — =1,2,3---
fq ‘/(_,‘(4‘12 47)_2) B q [l

The gap behaves then as a resonant cavity where the TM o
is stationary.

V. THE INVERSE PROBLEM

To deduce the complex permittivity from the measure-
ments of the admittance Y,/Y,, an iterative method is
used. Broad-band dielectric investigations on several
materials have been made. Now, electroactive polymers are
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Fig. 7. Theoretical resonant frequency of the gap in a 50-Q line.

studied by this method. The results have shown that the
complex permittivity can be measured with an error of less
than 5 percent by proper choice of sample dimensions.
This work will be published in a future paper.

VI. CONCLUSIONS

An approach for computing the equivalent-circuit
parameters for the termination of a coaxial line by a gap
filled by lossy materials is described. The method is quite
general and the results show that the analysis is accurate
over a broad range of frequencies. This cell enables mea-
surements of the complex permittivity of dielectric materi-
als to be made.
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